March 7, 2017

Antoine Bergamaschi (2017)

Methodological and software development for X-ray scanning imaging at Nanoscopium beamline

Abstract

The subject of this thesis is the methodological and software development of tools for processing very large multimodal and tomographic datasets produced on Nanoscopium beamline in the SOLEIL synchrotron. Scanning hard X-ray imaging allows simultaneous acquisition of multimodal information, i.e. of images in which each pixel contains several types of data. Combining these scanning techniques with the FLYSCAN infrastructure, developed for fast data acquisition at Synchrotron SOLEIL, permits to perform multimodal tomographic imaging and tomographic reconstruction during routine user experiments. A main challenge of such imaging techniques is the online processing of the important amount of generated multimodal data. The main outcome of this thesis work is the MMX-I software which is dedicated to processing large 2D/3D multimodal dataset. This software includes an original algorithm for continuous reading of large data volumes, several reduction functions, two phase reconstruction algorithms (integration in Fourier space and iterative technics) and tomographic reconstruction technics (filtered back projection and iterative technics). Every implemented method as well as application allowing to validate the new developments and few evolution perspectives are presented in this thesis manuscript. (Defended on March 7, 2017)