VEGF (Vascular Endothelial Growth Factor) Functionalized Magnetic Beads in a Microfluidic Device to Improve the Angiogenic Balance in Preeclampsia

Nom de la revue
Hypertension
Laura Trapiella-Alfonso, Lucile Alexandre, Camille Fraichard, Kelly Pons, Simon Dumas, Lucie Huart, Jean-François Gaucher, Marylise Hebert-Schuster, Jean Guibourdenche, Thierry Fournier, Michel Vidal, Isabelle Broutin, Laurence Lecomte-Raclet, Laurent Malaquin, Stéphanie Descroix, Vassilis Tsatsaris, Nathalie Gagey-Eilstein, Edouard Lecarpentier
Abstract

Preeclampsia is a hypertensive pregnancy disease associated with a massive increase in sFlt-1 (soluble form of the vascular endothelial growth factor 1) in the maternal circulation, responsible for angiogenic imbalance and endothelial dysfunction. Pilot studies suggest that extracorporeal apheresis may reduce circulating sFlt-1 and prolong pregnancy. Nonspecific apheresis systems have potential adverse effects because of the capture of many other molecules. Our concept is based on a specific and competitive apheresis approach using VEGF (vascular endothelial growth factor) functionalized magnetic beads to capture sFlt-1 while releasing endogenous PlGF (placental growth factor) to restore a physiological angiogenic balance. Magnetic beads were functionalized with VEGF to capture sFlt-1. Experiments were performed using PBS, conditioned media from human trophoblastic cells, and human plasma. The proof of concept was validated in dynamic conditions in a microfluidic device as an approach mimicking real apheresis. Magnetic beads were functionalized with VEGF and characterized to evaluate their surface ligand density and recognition capabilities. VEGF-coated magnetic beads proved to be an efficient support in capturing sFlt-1 and releasing PlGF. In static conditions, sFlt-1 concentration decreased by 33±13%, whereas PlGF concentration increased by 27±10%. In dynamic conditions, the performances were improved, with 40% reduction of sFlt-1 and up to 2-fold increase of free PlGF. The sFlt-1/PlGF ratio was reduced by 63% in the plasma of preeclamptic patients. Apheresis was also associated with VEGF release. A ligand-based approach using VEGF-coated beads is an effective approach to the capture of sFlt-1 and the release of endogenous PlGF. It offers new perspectives for the treatment of preeclampsia.