PI4P and BLOC-1 remodel endosomal membranes into tubules

Nom de la revue
Journal of Cell Biology
Riddhi Atul Jani, Aurélie Di Cicco, Tal Keren-Kaplan, Silvia Vale-Costa, Daniel Hamaoui, Ilse Hurbain, Feng-Ching Tsai, Mathilde Di Marco, Anne-Sophie Macé, Yueyao Zhu, Maria João Amorim, Patricia Bassereau, Juan S. Bonifacino, Agathe Subtil, Michael S. Marks, Daniel Lévy, Graça Raposo, Cédric Delevoye
Abstract

Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells and in vitro membrane systems, we show that phosphatidylinositol-4-phosphate (PI4P) and biogenesis of lysosome-related organelles complex 1 (BLOC-1) govern the formation, stability, and functions of recycling endosomal tubules. In vitro, BLOC-1 binds and tubulates negatively charged membranes, including those containing PI4P. In cells, endosomal PI4P production by type II PI4-kinases is needed to form and stabilize BLOC-1-dependent recycling endosomal tubules. Decreased PI4KIIs expression impairs the recycling of endosomal cargoes and the life cycles of intracellular pathogens such as Chlamydia bacteria and influenza virus that exploit the membrane dynamics of recycling endosomes. This study demonstrates how a phospholipid and a protein complex coordinate the remodeling of cellular membranes into functional tubules.