• Home >
  • Publications >
  • BIODICA: a computational environment for Independent Component Analysis of omics data

BIODICA: a computational environment for Independent Component Analysis of omics data

13 May 2022Bioinformatics

DOI : 10.1093/bioinformatics/btac204

Authors

Nicolas Captier, Jane Merlevede, Askhat Molkenov, Ainur Seisenova, Altynbek Zhubanchaliyev, Petr V Nazarov, Emmanuel Barillot, Ulykbek Kairov, Andrei Zinovyev

Abstract

Abstract

Summary

We developed BIODICA, an integrated computational environment for application of independent component analysis (ICA) to bulk and single-cell molecular profiles, interpretation of the results in terms of biological functions and correlation with metadata. The computational core is the novel Python package stabilized-ica which provides interface to several ICA algorithms, a stabilization procedure, meta-analysis and component interpretation tools. BIODICA is equipped with a user-friendly graphical user interface, allowing non-experienced users to perform the ICA-based omics data analysis. The results are provided in interactive ways, thus facilitating communication with biology experts.

Availability and implementation

BIODICA is implemented in Java, Python and JavaScript. The source code is freely available on GitHub under the MIT and the GNU LGPL licenses. BIODICA is supported on all major operating systems. URL: https://sysbio-curie.github.io/biodica-environment/.

Teams