Triggering the TCR Developmental Checkpoint Activates a Therapeutically Targetable Tumor Suppressive Pathway in T-cell Leukemia

Nom de la revue
Cancer Discovery
Amélie Trinquand, Nuno R. dos Santos, Christine Tran Quang, Francesca Rocchetti, Benedetta Zaniboni, Mohamed Belhocine, Cindy Da Costa de Jesus, Ludovic Lhermitte, Melania Tesio, Michael Dussiot, François-Loïc Cosset, Els Verhoeyen, Françoise Pflumio, Norbert Ifrah, Hervé Dombret, Salvatore Spicuglia, Lucienne Chatenoud, David-Alexandre Gross, Olivier Hermine, Elizabeth Macintyre, Jacques Ghysdael, Vahid Asnafi

Cancer onset and progression involves the accumulation of multiple oncogenic hits, which are thought to dominate or bypass the physiologic regulatory mechanisms in tissue development and homeostasis. We demonstrate in T-cell acute lymphoblastic leukemia (T-ALL) that, irrespective of the complex oncogenic abnormalities underlying tumor progression, experimentally induced, persistent T-cell receptor (TCR) signaling has antileukemic properties and enforces a molecular program resembling thymic negative selection, a major developmental event in normal T-cell development. Using mouse models of T-ALL, we show that induction of TCR signaling by high-affinity self-peptide/MHC or treatment with monoclonal antibodies to the CD3ϵ chain (anti-CD3) causes massive leukemic cell death. Importantly, anti-CD3 treatment hampered leukemogenesis in mice transplanted with either mouse- or patient-derived T-ALLs. These data provide a strong rationale for targeted therapy based on anti-CD3 treatment of patients with TCR-expressing T-ALL and demonstrate that endogenous developmental checkpoint pathways are amenable to therapeutic intervention in cancer cells.
Significance: T-ALLs are aggressive malignant lymphoid proliferations of T-cell precursors characterized by high relapse rates and poor prognosis, calling for the search for novel therapeutic options. Here, we report that the lineage-specific TCR/CD3 developmental checkpoint controlling cell death in normal T-cell progenitors remains switchable to induce massive tumor cell apoptosis in T-ALL and is amenable to preclinical therapeutic intervention. Cancer Discov; 6(9); 972–85. ©2016 AACR.
See related commentary by Lemonnier and Mak, p. 946.
This article is highlighted in the In This Issue feature, p. 932