December 7, 2012

Blaise Dumat (2012)

Vinyl-triphenylamine dyes optimized for two-photon microscopy : Non covalent interactions with DNA or HSA and cellular imaging

Abstract

Significant advances were made in the field of in vivo fluorescence imaging thanks to the recent development of biphotonic microscopy and super-resolution techniques, rendering intravital imaging and biological tissues analysis possible. Those techniques however require the use of new probes with optimized optical and biological properties.Several series of cationic dyes for DNA staining were developed based on the vinyl-triphenylamine (TP) scaffold. Those new switchable yellow or red fluorophores bind in the minor-groove of DNA and display high two-photon absorption cross-sections. Two anionic derivatives were also designed for staining HSA.In fixed or apoptotic cells, the cationic dyes stain nuclear DNA with a high brightness and contrast. They are non-cytotoxic, photostable and cell permeant. The molecule with the most optimized properties, TP-2Bzim, has one of the highest two-photon brightness to date (383 GM in DNA), allowing sensible detection in biphotonic microscopy at low concentration and excitation power. In live cells, the dyes are localized in the mitochondria, but it appears that upon constant mono- or bi-photonic excitation they trigger cell apoptosis within a few minutes and are released in the nucleus. Since the phenomenon can be imaged by fluorescence microscopy, the TP dyes could thus be used as photosensitizers for theranostics.A synthetic pathway was also developed to functionalize the TP-2Bzim. It was then coupled by “click-chemistry” to short oligonucleotides or PNA sequences for fluorescence in situ hybridization, and to folic acid and spermidine for cancer cells targeting. (Defended on December 7, 2012)